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ANALYSIS OF THE WALKINSHAW DIFFERENCE RESONANCE

In preparation for the Aladdin experiments, I will give an analytic

treatment of the Walkinshaw difference resonance. The treatment nearly

parallels that in LS-l3l for the third-integral resonance.

I. Analysis of the Resonance

The Hami 1 tonian in the neighborhood of the Wa lkinshaw resonance

Vx - 2 vy = m (1.1)
can be written in terms of angle-action variables in the form

h V J +v J +S(2J )1/2(2J )sin(y -2y -m&+ç)xx yy x y x y
+aJ 2+2bJ J +cJ 2x x Y Y (1. 2)

We first transform to resonant coordinates via the generating

function

F(Ji,J2,yx,yy,8) Ji(y -2y -m8+ç)+J2Yx y y (1.3 )

which gives

Yl = Y - 2y - m8 + çx Y Y2 yy (1.4 )

Jx J 1 Jy = J 2 - 2J 1 (i.5 )

J 1 = Jx J 2 J + 2JY x (1. 6)
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The resonant hamiltonian is

h
w

i /1) ~1./ .t . L.SJ1+VyJ2+2S(2J1) (J2-2Ji)sinYi+aJl +2bJl (J2-2J1)

2
+c(J 2-2J 1) (1. 7)

where

S v - 2v - mx y ( 1.8)

We see that J2 is a constant of the motion. Note also that the motion is

required by Eq. (1.5) to lie within the circle 2J1 ( J2 in the J1, Yi -phase

plane.

In rectangular coordinates

Q = (2Ji)1/2sinyl p 1/2
(2J1) cosyi (1.9)

the hamiltonian is

hw = ~S (p2+q2) + 2SQ(J2-p2_Q2)+ i a (p2+q2)2+b(p2+q2)(J2_p2_Q2)

+C(J2-p2_Q2)2 + vyJ2 (1.10)

For the value of hw corresponding to the limiting circle J2 -

2J1 0, Eq. (1.10) factors into the product of two circles:

(J _p2_Q2)(2SQ+b(p2+q2)+c(J _p2_Q2)_ ~ S - ~ aJ - _41a(p2+Q2))2 2 2 4 2 o (loll)
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The first factor is the limiting circle, and the second is the circle

2 2 B S2P + (Q +~) = - + --A A .2
A

(1.12)

where

1 1 1
A=b-c- 4 a , B = Z2-(C- ¡a)J 2 (1.13)

The circles intersect (if at all) in the points

Qo =(B-AJ 2) /2S P = :!(J _Q 2)1/2o 2 0 (1.14 )

There are two cases:

a) IQ I ) J21/2o Circles do not intersect. (See Fig. 1.)

b) I Q I ( J 1/2o a Circles intersect. (See Fig. 2.) The elliptic

fixed points occur at the points.

2 4882 J2 1/2QI0:! = 12S tH(l+ 2 J Ì (1.15)
2

if we neglect the higher-order frequency shifting terms. The first-order

correction for frequency-shift terms is

QH
sliQI0:! :! 1/2

(22+4882 J2 J

(1.16)

where

36K = (2b - 4c) J2QI0:! + (a+4c - 4b) QI0:! (1.17)
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It is convenient, both experimentally and theoretically to consider

motions in which the y-amp1itude is initially very small and the x-amplitude

_ 2is finite. In that case, J2 - Xo ' where Xo is the initial x-amplitude. The

conditions above become

a) (Fig. 1) Xo ( I (8 + (a-2b)xo2J/4SI

b) (Fig. 2) xo) I (8 + (a-2b)xo 2 J /4S I (1.18 )

The term (a-2b )xo 2 is a higher order correction due to amplitude-dependent

tune shifts. From Eq. (1.4), we see that the condition that y remains small

is that the phase point Q, P remains near the limiting circle. Therefore, in

case a), there is no coupling. A small initial y-amplitude remains small. In

case b), the phase point cannot remain near the limiting circle. Thus if x

exceeds the threshold value given by Eq. (1.18), the x and y motions are

coupled. the maximum y-ampli tude occurs where the circular arc crosses the Q-

axis, i.e., at (:I)Q2' where

Q2
B S2 1/2 S
(- + -J - I-AIA A2 (1.19)

and (:I) is the sign of S/A.

The maximum y-ampli tude is

2
Ymax 2 (x 2_Q 2)o 2

2 s2 b 83 1 8 2 82.2x - -- + + (c - ¡a)-2 (x - -)+a SS 128S4 28 0 6482 (1.20 )

where the last line gives the first order correction due to amplitude-

dependent tune shifts.

It is of interest to estimate the frequency of energy exchange

between x and y motion in case b). Since the points Qo' :! Po are fixed

points, the period for zero initial y-amplitude is infinite. For small initial

y-amplitude, the phase point moves around the limiting circle in Fig. 2 until it

arrives at the fixed point. It remains near the fixed point for a time,

depending on the y-amplitude, and then traverses the circular arc up to the
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other fixed point. The y-motion therefore consists of a long time near zero

.amplitude, punctuated by periodic increases to a maximum given by Eq. (1.20)

and subsequent fall to near zero amplitude. If we neglect the terms in a, b,

and c, the circular arc becomes the straight line

s
Q = 4š (1.21)

We can integrate the equation of motion for P along this line, to obtain

P P tanh (2P 88)o 0 (1.22)

where Po is given by Eq. (1.14):

2 2
2

8
P X

- 1682
0 0

The time scale for the pulse in y-ampli tude is therefore

(1.23)

68 1
2rr = 4rrP 8

o

1 revolutions.
4'I S

o
(1.24 )

We can calculate the frequency of motion about the fixed points Q1x. The

result, for 8 = a and neglecting a, b, and c is

v
w

4x S oscillations/revolution.
o (1. 25)

The time scale is of the same order as that given by Eq. (1.24).

These time scales are shorter than radiation damping times) so it

should be possible to see coupling phenomena. Radiation damping will damp the

motion in Fig_ 2 toward the fixed points, at the same time damping the value

of J2, which will move the system toward the non-resonant case, unless 8 = o.
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2e Connection with the Real Ring

We follow the same analysis as in LS-131 through Eq. (2.7J. (I will

use square bracket to indicate equation numbers from L8-131.) We substitute

from Eq. (2.3J in Eq. (2.61, to obtain, in place of Eq. (2.81,

H = R-1H (J ,J ) + B" i 8(s-s .)(2J )3/2S 3/2sin3( -0/)w 0 x y 6Bp J x x yx x
- B"i 8(s-s.)S 1/2S (2J )1/2(2J )sin(y -0/ )sin2(y -0/)2Bp J x Y x Y x x Y Y (2.1 )

where

H (J ,J ) = v J +v J +aJ 2+2bJ J +cJ 2oxy xXYY x xy Y (2.2)

We now make the substitutions (2.9J and (2.10J, with the result, in place of

Eq. (2.11 J .

00

He H (J ,J ) +o x y ¿; S3(2J )3/2(-sin(3Y -m8+ms ./R-30/ .)x x J XJ
m=-OO

+3sin(y -m8+ms ./R-o/ .) Jx J XJ

00

¿; S (2J )1/2(2J )(-sin(y +2y -m8+ms ./R-o/ .-20/ .)
m=-OO w x Y x Y J XJ Y J

-sin(y -2Y -m8+ms ./R-o/ .+20/ .)+ 2sin(y -m8+ms ./R-o/ .) Jx Y J XJ YJ x J XJ (2.3 )

where 83 is given by Eq. (2.12), and

S 1/2 ß B" i

S = ( x Y )w 16 1T Bp s=s.
J

(2.4 )

After dropping or transforming away the non-resonant terms, we are left with

the Hamiltonian (1.2), with S given by Eq. (2.4), and

ç ms /R-o/xj+2 o/y j (2.5 )
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.3.. Transforming the Non-Resonant Terms

The non-resonant terms in Eq. (2.3) can be transformed away by the

method used in L8-131, Section 3. We introduce a generating function

F = J Y + J Y + (2J )3/2¿ + (2J )1/2(2J )¿Y x _Y Y x 3 _x _Y w (3.1 )
where

¿3 = ¿ (F '3cos(3Y -m&+ms ./R-3ij .)+F '31cos(y -ül8+ms ./R-ij .))m x J XJ m x J XJ
m

¿ = ¿ (F ,+cos (y +2 Y -m&+ms ./R-ij-2 ij .)w m' m x Y J YJ
+F , cos(y -2Y -r8+s ./R-ij .+2ij .)m - x Y J XJ YJ

+F , iCos(y -m8+ms ./R-ij ,)) (3.2)m w x J XJ

The transformation equations for J are

3F
(2J )3/2

dL3

(2J )1/2(2J )
3¿

J + w=-= J -+
ãYx 3y x x 3y _x _Yx - x x

3F
32:

(2J ) 1/2 (2J )
dL

J J + (2J )3/2 -2 + w
(3.3)7Y = ãYy Yy -y x 3y x x

y Y

The third-order terms in ~8 can be written as in Eq. (3.4). They can be made

to vanish by setting

-83
Fmi3= 3v -m'

x

3 83
Fm'31 = V-m'

x

Fm,+
s

w
v +2v -r'x Y

8
F = wm' v -2v -m'x y

F
m'wl

-2 8
w

v -m'x
(3.4)

We do not want to transform away the resonant term, so we set Fm- = 0, for the

value m' = m corresponding to the resonance (1.1). (In Aladdin, m = -7.)
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We can now calculate the 8-independent terms of fourth order

in~. The resulting corrections to the coefficients in Eq. (2~2) are

a
s

68 2 l: (3 +3 m'-3vm' x
1

m'-V x
~ 6332(- o~ - O(;V ) + 20Vx+60(3vx)Jx x (3.5 )

bs = 3S3 l: (-3F , 1) - S l: (-2F '31-4F , 1 + 2F ,++2F , Jm' m w w m' m m w m m -

24S3S -8S 2l:' -( w w
v -m'm' x

28 2
w

v+2v-m'x y

2S 2
w

V -2v -m' Ìx y

~ (24S3Sw-8Sw2)(0~ - 20vxJ - 28w2(0(V1+2V) - 20(Vx+2Vy) - 20(Vx-2Vy)J (3.6)x x y
c s - 2 S ¿ ( - 2F , , i + F , + +F , Jw m' m w m m - -1282

w ¿' ( 4v -mYm' x

+ 1 + 1 J
v +2 v -m' v -2 v -m'x y x y

. -28 2 (4 + 1w 1\ o(v +2v )x x y 40vx - o(v +2v ) - o(v -2v )Jx y x y (3.7)

Formula (3.5) agrees with (3.7), except that there is no missing resonant

term. The term oz is again defined as z-m, where m is the nearest integer to z.
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Fig. 1. Non-resonant case.

r
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Fig. 2. Resonant Case
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